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Abstract. Echocardiography plays an important part in diagnostic aid in 
cardiology. During an echocardiogram exam images or image sequences are 
usually taken from different locations with various directions in order to 
comprehend a comprehensive view of the anatomical structure of the 3D 
moving heart. The automatic classification of echocardiograms based on the 
viewpoint constitutes an essential step in a computer-aided diagnosis. The 
challenge remains the high noise to signal ratio of an echocardiography, leading 
to low resolution of echocardiograms. In this paper, a new synergy is proposed 
based on well-established algorithms to classify view positions of 
echocardiograms. Bags of Words (BoW) are coupled with linear SVMs. Sparse 
coding is employed to train an echocardiogram video dictionary based on a set 
of 3D SIFT descriptors of space-time interest points detected by a Cuboid 
detector. Multiple scales of max pooling features are applied to representat the 
echocardiogram video. The linear multiclass SVM is employed to classify 
echocardiogram videos into eight views. Based on the collection of 219 
echocardiogram videos, the evaluation is carried out. The preliminary results 
exhibit 72% Average Accuracy Rate (AAR) for the classification with eight 
view angles and 90% with three primary view locations. 

Keywords: Classification of Echocardiogram Video, Cuboid Detector, 3D 
SIFT, Sparse Coding, SVM. 

1 Introduction 

Echocardiography remains an important diagnostic aid in cardiology and relies 
ultrasonic techniques to generate both single image and image sequences of the heart, 
providing cardiac structures and their movements as well as detailed anatomical and 
functional information of the heart. In order to capture different anatomical sections 
of a 3D heart, eight standard views are usually taken from an ultrasound transducer at 
the three primary positions, which are Apical Angles (AA) (location 1 with 4 view 
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angles), Parasternal Long Axis(PLA) (location 2 with 1 view angle) and Parasternal 
Short Axis (PSA) (location 3 with 3 view angles) respectively. Example images of 
these eight views of the 3 primary locations can be seen in Figure 1. The major 
anatomical structures such as left ventricle are then manually delineated and measured 
from different view images to further analyze the function of the heart. Hence, the 
echocardiogram view recognition is the first step for echocardiogram diagnosis.    

 
 

(a) A2C 
(Apical 2 Chamber) 
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(Apical 3 Chamber) 
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(Apical 4 Chamber) 
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Axis of Aorta) 
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(Parasternal Short 
Axis of Papillary) 
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(Parasternal Short 

Axis of Mitral) 

Fig. 1. Eight views of echocaridogram videos 

With the advances of the techniques in computer vision, computer-aided 
echocardiogram diagnosis is becoming increasingly beneficial in recent years, the 
view also shared in [1,2,3,4]. Their work mainly focuses on spatial and motion 
representations for the major anatomical structures that can then in turn be used to 
conduct higher level disease discrimination and similarity search. On the other hand, 
due to the image variations in the same anatomical structure under different views, 
prior knowledge of the viewpoint is needed before the treatment on both model 
selection (i.e. Active Shape Models (ASMs) [2,3]) and filtering (i.e. Edge filter [4]) 
process. As a result, similar to a clinical workflow, the automatic echocardiogram 
view classification is the first and essential step in a computer-aided echocardiogram 
diagnosis system. A number of progresses have been made so far. For example, the 
work started in [5] indexes echocardiogram videos according to their viewpoint, the 
work has been subsequently followed by [6,7,8,9]. In [5,8], image-based methods are 
employed with the focus on the detection of multiple objects and their spatial 
relationships in an image/frame (e.g. 4 chambers of the heart in A4C). [6,7,9] add 
motion information in their research. In [9], the features are extracted by calculating 
magnitude of the gradients in space-time domain of videos whereby a hierarchical  
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classification scheme is performed to reduce the number of misclassifications among 
the super-classes. In [6], the extraction of motions is conducted by tracking Active  
Shape Models (ASMs) through a heart cycle that is then projected into an eigen-
motion feature space of the viewpoint class for matching. In [6.9], the evaluation are 
performed only on four views, including Apical 2 Chamber (A2C), Parasternal Long 
Axis (PLA), Parasternal Short Axis of Papillary (PSAP) and Parasternal Short Axis of 
Aorta (PSAA) as described in [6], whereas in [9], another four views, which are 
Apical 4 Chamber (A4C), Apical 2 Chamber (A2C), Parasternal Long Axis (PLA) 
and Parasternal Short Axis (PSA), are looked at. Additionally, the work specified in 
[7] utilizes the technique of scale invariant features extracted from the magnitude 
image that has undergone edge filtered motion as well as Pyramid Matching Kernel 
(PMK) based on the Support Vector Machine (SVM) for view classification, which 
has resulted in  81% Average Accuracy Rate (AAR) over a collection of 113 videos 
with eight views. 

In this study, according to the datasets of video clips we collected which consisted 
of eight viewpoints, we adopt a slightly different approach by utilizing the Bag of 
Word (BoW) paradigm that is integrated with linear SVMs. Unlike the traditional 
BoW paradigm [10], sparse coding [11] is employed in this paper instead of Vector 
Quantization (VQ) to train a video dictionary based on a set of 3D SIFT (Scale 
Invariant Feature Transform) descriptors of space-time interest points detected by 
Cuboid detector. Furthermore, instead of using histograms, multiple scales of max 
pooling features are applied as the representations of echocardiogram videos. 
Subsequently, the linear multiclass SVMs is employed to classify these 
echocardiogram videos into eight view groups. 

The remaining of this paper is structured as follows. Section 2 explains the 
methods employed in the study, whist Section 3 shows the experimental results. 
Conclusion and discussion are drawn in Section 4, which is followed by the sections 
of Acknowledgment and References. 

2 Methodology 

Figure 2 schematically illustrates a framework of Bag of visual Word of SVM for the 
classification of echocardiogram video views, which constitutes visual dictionary 
generation via sparse coding (left rectangular, coloured in green), video 
representations based on space-time max pooling of 3D SIFT sparse codes (middle, in 
red) and echocardiogram video view classification based on multiclass SVM (right, in 
blue). A codebook of videos is firstly constructed by following the BoW paradigm 
using 3D SIFT for the feature description of space-time interest points that have been 
detected using Cuboid detector in advance. Then sparse coding for visual dictionary 
(a codebook) training starts. Based on a trained codebook, the 3D SIFT of those 
space-time interest points detected in each video clip are then coded using these  
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codes. The adoption of space-time max pooling of 3D SIFT sparse codes then takes 
place as echocardiogram video representations.  As a result, the classification of 
video clips is performed using multiclass linear SVMs. The detailed methodology is 
further accounted for in the next section. 
 
 

 

Fig. 2. A framework of bag of word (BoW) SVM recognition 
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2.1 The Creation of an Echocardiogram Video Codebook  

1) Space-Time Interest Point Detector --- Cuboid Detector 
A variety of methods exist to detect Space-Time Interest Point (STIP) in image 
sequences. Typically, STIPs are figured out via firstly calculating a response function  
over the spatiotemporal locations and scales of image sequences and then by selecting 
the local maxima of the response function. The evaluation of STIP methods overall 
the standard video datasets (i.e. KTH actions1, UCF sports2, Hollywood2 movies3 and 
FeEval4) [12,13] have demonstrated our choice of Cuboid detector + 3D Histogram of 
Oriented Gradients (HOG3D) descriptor that gives better performance in action 
recognition. In comparison with Harris3D [14] and Hessian3D [15], Cuboid detector 
[16] overcomes the lacks of temporal response by dealing with temporal data 
separately with Gabor filters, which not only measures local changes in the temporal 
domain, but prioritizes the repeated events of a fixed frequency such as heartbeat in 
echocardiogram video.  

The Cuboid detector is a set of separable linear filters with 2D spatial Gaussian 
smooth kernel and 1D temporal Gabor filters, as such a response function is 
formulated as  

 
(1)

where ( )tyxI ,, refers to an image sequence; ( )σ;, yxg  the 2D spatial Gaussian 

smoothing kernel with spatial scale σ , whereas ( )ωτ ,;thev  and ( )ωτ ,;thod  

defined as Eq. (2) are a quadrature (cosine and sine) pair of 1D temporal Gabor filters 
with temporal scale τ with τω /4= . Like [12], the scale parameter 2=σ  and 

4=τ are selected in this study. 
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As a result, space-time interest points are extracted by calculating the local maxima of 
the response function R.   

2) Space-Time Interest Point Descriptor --- 3D SIFT Descriptor 
After the affirmation of space-time interest points, the representation of these points 
follows for the further processing. These descriptors should capture space-time 
neighborhoods of the detected interest points and are usually formulated by using  
 

                                                           
1 http://www.nada.kth.se/cvap/actions/ 
2 http://vision.eecs.ucf.edu/ 
3 http://www.di.ens.fr/~laptev/download.html 
4 http://www.feeval.org/Data-sets/FeEval.html 
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image measurements such as Histogram of space-time Oriented Gradients (HOG3D)  
[17], concatenation of Histogram of spatial Oriented Gradients and motion Optical 
Flow (HOG/HOF) [18], and 3D Speeded Up Robust Feature (SURF3D) [15]. 
According to our previous study, 3D SIFT, also known as HOG3D gives robust 
feature description and is therefore employed in this study to describe visual feature 
of space-time interest points detected by Cuboid detector.  

As shown in Figure 3 (a and b), the 12 x 12 x 12 neighbourhood volume around an 
interest point is selected and then divided into 2x 2 x2 = 8 sub-volumes. For each sub-
volume, the gradient magnitude and orientation of each voxel in the sub-volume are 
calculated by using Haar wavelet transform along x, y and z direction respectively, 
and then the magnitude of the gradient is accumulated to the corresponding bin of the 
gradient orientation. The tessellation based orientation histogram [19] is then 
implemented in this study. By using the tessellation technique, each bin of 3D 
gradient orientation is approximated with a mesh of small piece of 3D volume seen as 
a triangle in Figure 3(d). The gradient orientations pointing to the same triangle then 
belong to the same bin, as marked by the black points in Figure 3(d). The total 
number of the bins is calculated as 20 x (4 ^ Tessellation level). The Tessellation level 
decides the number of constituting triangle surfaces, i.e., the number of bins of 
gradient orientation in 3D space. In this study, the Tessellation level is set to 1, thus 
resulting in 80 bins. Each sub-volume is accumulated into its own sub-histogram.  
Subsequently, the 3D SIFT descriptor X of each interest point is of 2 x 2 x 2 x 80 (= 
640) dimensions.  

 

 

Fig. 3. 3D SIFT descriptors 

3) Echocardiogram Video Vocabulary Construction---Sparse Coding 
Once the 3D SIFT features are extracted from each space-time interest point, which 
are considered as candidates for unit elements, or the “words” in the visual dictionary, 
sparse coding is employed. 
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encodes each descriptor of an image by solving an optimization problem as 
formulated in Eq.(3).  

1
1

2

2,
min m

M

m
mm

VU
uVux λ+−

=

                       (3)
 

                         Subject to: Kivi ,...,1,1 =∀≤   

Where [ ]MxxxX ,..., 21= ( )1dx
m Rx ∈

 
represents a set of 3D SIFT descriptors 

from echocardiogram video dataset; [ ]KvvvV ,..., 21= ( )1dx
i Rv ∈  refers to the K 

bases, called the dictionary or codebook; [ ]MuuuU ,..., 21= ( )1Kx
m Ru ∈  remains 

the sparse codes for video based on codebook V, and λ  is the coefficient to control 

the amount of 1L  norm (
1

⋅ ) regularization.  

In the training stage, 80000 interest points as the training data set are randomly 
selected from all interest points in our video clips, and their 3D SIFT descriptors are 
applied to off-line training on the codebook V with the size of K = 4000 by solving 
Eq.(3) using alternating optimizing technique over V or U while fixing the others.   

2.2 Echocardiogram Video Representations --- Space-Time Max Pooling of 
3D SIFT Sparse Codes 

In the coding stage, 3D SIFT descriptors ix extracted from each interest point can be 

encoded as iu  by inputting the trained codebook V in Eq. (3). A clip of video is 

then described as a set of 3D SIFT sparse codes [ ]NuuuU ,..., 21= , where N is the 

total number of the interest points in the video. 
In order to describe the local visual features, a video is divided into a number of 

sub-volumes as illustrated in Figure 4.  According to the characteristics of our 
dataset that lacks heartbeat ECG data, the alignment with time scale is unavailable. As 
a direct result, although a group of videos belonging to the same view might have 
been captured from the similar locations and angles, they can be recorded at different 
starting times of a heartbeat circle,  implying two interest points from two different 
videos being not comparable while in the time domain. Therefore, the grouping of 
these videos is only fulfilled in the space domain (along horizontal and vertical 
direction), instead of time domain.  In this study, a video clip is divided into 3 sub-
volumes in the geometric space of space-time (Up, Middle and Bottom) with equal 
distance along vertical direction and 2 sub-volumes (Left and right) along a vertical 
center plane respectively as shown in the middle graph of Figure 4, and then is further 
divided into 6 sub-volumes as shown in the right of Figure 4. In total, 12 (=1+3+2+6) 
sub-volumes are created in this way to reflect different scales. 
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Fig. 4. Space-time max pooling 

Similar to [11], the representations for each sub-volume noted as 
{ }KifF i ,,2,1, ==  are computed by a max pooling function as given below in 

Eq. (4). 

 (4)

Where K indicates the size of the codebook V . In Eq. (4), S refers to the total 
number of the interest points in the sub-volume. The pooled features from all the sub-
volumes at different spatial levels are then concatenated to form a space-time 
representation of a video { },,,2,1, PjFF j ==

 
where P = 12 is the total number 

of sub-volumes in a video clip. 

2.3 Echocardiogram Video Classification --- Linear SVMs 

Following the pooling of sub-volume features, the classification of video clips is 
performed using a multiclass SVM with a linear kernel as formulated in Eq. (5).  

 
   (5) 

 
Where

jF is the feature representation of video j.  With regard to binary 

classification, an SVM aims to learn a decision function based on the training dataset 
as defined in Eq. (6). 
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( ) ( ) bFFkaFf
n

i
ii += 

=1

,                        (6) 

In order to obtain an extension to a multi-class SVM, the trained videos are 

represented as ( ){ }n

iii lF 1, = , where { }Lli ...2,1∈  denotes the class label of trained 

video i. One-against-all strategy is applied to train the total number of L binary 
classifiers.  

3 Experimental Results 

3.1 Dataset 

In this paper, a total of 219 echocardiogram videos are collected from 72 different 
patients (containing 14 wall motion abnormalities and 58 normal cases) in the First 
Hospital of Tsinghua University, China. All videos are captured with duration of 1 
second from GE Vivid 7 or E9 and are stored in the DICOM (Digital Imaging and 
Communications in Medicine) format with the size of 434 pixel x 636 pixel x 26 
frame. Each clip belongs to one of the eight different views, as detailed in Table 1. 
The ground truth data of eight different view videos is created by clinicians in the 
Heart Center of the First Hospital of Tsinghua University. 

Table 1. Classes in the Dataset 

View A2C A3C A4C A5C PLA PSAA PSAP PSAM Total 

Videos 42 32 34 7 37 39 19 9 219 

3.2 Experiment and Results 

In order to train an echocardiogram codebook, 80,000 interest points are randomly 
selected from all interest pointes in 219 video clips, and their 3D SIFT descriptors 
yield a feature database with the size of 80,000 (number of trained interest points) x 
640 (size of 3D SIFT descriptors), which are then subsequently applied to train a 
codebook with the size of 4000 (size of the codebook) x 640 (size of 3D SIFT 
descriptors) using the approach of sparse coding with 10 iterations. Based on the 
trained codebook, all interest points from the 219 videos are represented by the 3D 
SIFT sparse codes. A space-time max pooling is subsequently applied to obtain video 
representations with the size of 4000 (size of codebook) x 12 (sub-volumes). Due to 
the small dataset in this study, we employ the leave-one-out methodology, i.e., when 
testing a video clip, the entire dataset exclude test video is used for SVM training. The 
classification results for the eight views are visualized in a confusion matrix as shown 
in Table 2.  
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Table 2. Confusion matrix for 8 echocardiogram view classification 

  Classification Results Accuracy 
Rate 
(AR) 

Ground 
Truth 

 A2C A3C A4C A5C PLA PSAA PSAP PSAM 

A2C 32 2 6 0 0 2 0 0 0.76 
A3C 6 17 6 0 0 3 0 0 0.53 
A4C 5 1 26 0 2 0 0 0 0.76 
A5C 1 0 2 4 0 0 0 0 0.57 
PLA 1 0 0 0 34 2 0 0 0.92 

PSAA 2 0 0 0 4 28 1 4 0.72 
PSAP 0 0 0 0 2 5 12 0 0.63 
PSAM 0 0 0 0 1 3 1 4 0.44 

Error Rate 

(ER) 
0.32 0.15 0.35 0 0.21 0.3 0.14 0.5  

 
The values in the last column of Table 2 are Accuracy Rate (AR) values for each 

class, whereas the values in the last row refer to Error Rate (ER) for each class. In 
summary, the average AR (AAR) for all classes is 72% (157/219), and the average 
ER (AER) is 28% (62/219).  According to the data in Table 2, the most erroneous 
classification takes place within the classes having the similar view points, such as 
views taken from Apical angles (4 views) and Parasternal Short Axis (3 views). The 
unique view of PLA gives the best performance (AR=92%).  

Our method is also tested on three primary view locations taken from Apical 
angles (including A2C, A3C, A4C and A5C, with 115 datasets in total), Parasternal 
Long Axis (PLA, with 37 data) and Parasternal Short Axis (including PSAA, PSAP 
and PSAM, with 67 data in total). The classification results are shown in Table 3. The 
AAR for the three classes is 90% (197/219), and the AER is 10% (22/219), 
suggesting the significant benefit of proposed synergy. 

Table 3. Confusion matrix for 3 primary view locations 

 

AA 

(Apical Angle) 

 

PLA 

(Parasternal 

Long Axis) 

PSA 

(Parasternal 

Short Axis) 

Accuracy 
Rate (AR) 

Ground 
Truth 

AA 112 0 3 0.97 

PLA 3 31 3 0.84 

PSA 9 4 54 0.81 

Error Rate (ER) 0.1 0.11 0.1  
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4 Conclusion and Discussion 

Due to the lack of ECG data in our datasets, comparison with the similar work as 
addressed at [7] might not be straitforward if not possible. In their study, data 
alignment is performed first to ensure all the video data starting from the same heart-
beat cycle, whereas in our case, this alignment in the time domain is omitted via using 
space-time max pooling for feature representations (detailed in Section 2.2), making 
our appraoch more challenge. In addition, their AAR value of impressive 81% is 
based on 113 videos, whareas ours of 72% of AAR arises from 219 clips. All in all, 
each approach has both pros and cons and is usually talored based on the 
characteristics of each data collection. Therefore the future work includes cross 
evaludation given the availability of different datasets. 

This papre presents that the synergy of the well-known alrgorithms obtained in 
each individual computer vision field can be possible to produce an improved results 
in a clinical sector. In dealing with echocardiographies, challenges remain on not only 
the low resolution that an ultrasonic image endures but also the computational 
complexity and time cost while processing video images. With the availabilty of ECG 
data in the future, the calibration of time scale can be achieved, which however might 
introduce extra porcessing cost. The future work also include the inclusion of larger 
datasets to further varify the proposed synergy. 
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